
 1

Lessons Learned from Adapting Aerospace Engineering
Tools to the Parallel and Grid Computing Environment

Seungwon Lee,1 Hook Hua,1 Robert Carnright,1 John Coggi2 and David Stodden2

1Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91202
2Aerospace Corporation, 2350 E. El Segundo Blvd. El Segundo, CA 90245

Seungwon.Lee@jpl.nasa.gov
818-393-7720

Abstract— Many widely-used aerospace data visualization
tools are interactive in nature and are programmed to run on
a single processor. While such tools support real-time
manipulation of simulation environments, the computations
that generate the data are often batch oriented and
computation intensive. In many cases, the data generation
software is too tuned to a single-processor infrastructure to
be readily adapted for emerging parallel and grid computing
environments. This paper presents several lessons learned
from adapting an aerospace engineering tool to the parallel
and grid computing architecture. The architecture provides
the ability to perform high-power computing by distributing
process execution across many computers connected by a
dedicated network or the internet. Some of the challenging
tasks involved in the adaptation are (1) to decouple the user
interface and display functions from the computational
functions, since interaction and graphics are usually
unnecessary expenses in parallel and grid computing, (2) to
identify and parallelize computationally expensive functions
without the drastic modification of the code and data
structures, (3) to find a lightweight, yet versatile software
solution for a client-server machine interface for remote job
execution. The solutions we found for these elaborate tasks
are presented and their pros and cons are discussed.1 2

TABLE OF CONTENTS

1. INTRODUCTION.. 1
2. PARALLEL COMPUTING.. 1
3. GRID COMPUTING... 3
4. CONCLUSIONS.. 4
REFERENCES .. 4
BIOGRAPHY.. 4

1. INTRODUCTION

As the computational resources and processing power
become readily available, science and engineering tools are
being adapted to take advantage of parallel and grid
computing. These computing methods provide improved
performance by distributing process execution across many
computers connected by a dedicated network or the internet
[1,2]. This paper presents lessons learned from adapting an
aerospace engineering tool called Satellite Orbit Analysis
1
1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1067, Version 1, Updated October 27, 2006

Program (SOAP) to the parallel and grid computing
environment.

SOAP is a widely used tool within the aerospace
community for the visualization and analysis of space
missions. Initially, all of the software ran in single processor
mode. However, mission trade studies involve multiple
independent SOAP runs, and the total CPU time required
for lengthy missions can reach over one thousand CPU
hours. The high computational requirement prohibited Team
X at JPL and the Concept Design Center (CDC) at The
Aerospace Corporation from performing trades and
coverage analyses in a concurrent engineering environment.
We have developed parallel computing and remote
execution capabilities in SOAP in order to reduce the per-
study duration and cost of mission trade studies. This is the
topic covered by the rest of this paper.

2. PARALLEL COMPUTING

As a prerequisite to the parallel computing development, we
developed a version of SOAP that can be configured to
execute in either parallel or interactive mode. In the parallel
mode, the user interface and the display are suppressed, and
only the computational components are executed as a batch
job on the server. The results are then conveyed back to the
client machine, where they may be interactively viewed by a
client machine version, which employs the user interface
and visualization components. The decoupling of graphics
and visualization eliminates their unnecessary expense of
computational power in the parallel and grid computing
environment. In the graphics-free batch-mode executable on
the server, the graphical and user-interface functions have
been mapped to empty stub functions. This allows the
domain-specific application code to appear the same while it
simply linked to null library functions having the same
Application Programmer's Interface (API).

The parallel computing development starts with identifying
the computational components in the code that can benefit
the most from parallelization. The ideal candidates are those
that are easy to partition into quasi-independent executions.
For example, a loop that calculates separate function
evaluations on independent variables is ideal. The
development of parallelization of the loop involves a

 2

partitioning of the loop into independent jobs and the
collection of the job results at the end. If the partitioned jobs
are coupled, the result of a partition needs to be sent to other
partitions that have the coupling with the sender. The
message passing between the processors due to the job
coupling and synchronization unavoidably reduces the
parallel speed-up. Therefore, the less coupled the partitioned
job becomes, the more the overall job performance
improves.

Another important feature to look for in the identification of
the parallel computation component is computational
intensity. It is ideal to parallelize the most computationally
expensive parts, because these dominate the execution time.
For example, if one part takes W fraction of the total
computation time and is parallelized up to the ideal limit,
the speed-up of the total computation time with n number of
processors will have the upper limit given by

!

speedup =
1

(1"W) +W /n
 (1)

The equation shows that as W becomes close to 1 the speed-
up approaches n. Conversely, as W becomes close to 0 the
speed-up approaches 1. Therefore, the parallelization speed-
up is greatly determined by W the computation time of the
parallelized part in terms of the fraction of the total
computation time.

Guided by these heuristics, we have selected two routines in
SOAP as the first targets for parallelization. They are
“Parametric Study” and “Contour Calculation” modules.
The associated routines compute one or more analytical
functions in a loop and become quickly computationally
intensive as report duration, time resolution, and variable
complexity increase. The parametric study is a loop in a
variable domain while the contour calculation is a loop in a
spatial domain. The result of each variable and spatial
coupling is completely independent, so that message passing
is not needed in the parallel execution of the loop.

The variable and spatial domains in the two functions are
sliced and distributed to processors proportional to their
processing powers. Faster computers are assigned more jobs
than slower computers. This job distribution scheme is
essential when a cluster computer is composed of
heterogeneous computers with different processing powers.
The result of the partitioned computation is collected at the
end of the computation. A single processor handles the task
of writing the numeric results to a file. Minimal message
passing ensures the faster execution of the parallel
implementation.

The message passing between processors and the
synchronization of the parallel execution are handled by
Message Passing Interface (MPI) library, the most
commonly used library for parallel computing in a
distributed memory architecture [3]. Only a few key

functions in MPI are used for the present work. The
MPI_Bcast function is used for the result collection after the
parallel execution of the loop is complete. The MPI_Barrier
function is used between the end of the parallel execution
and the beginning of the local result collection so that
message passing is not timed out by a processor which is
delayed in finishing the parallel job. The MPI_Send and
MPI_Recv functions are used in place of the MPI_Bcast
when only one processor is required to have the complete
array of results and write out the results.

The two parallel routines are tested on JPL’s Dell Cluster
Computer to benchmark the performance. The cluster
computer is composed of 1024 Intel Pentium 4 Xeon
processors with 3.2 GHz clock speed, 1MB cache, 32-bit
integer, and 2 GB memory per CPU. Each processor is
connected by Myricom Myrinet-2000 fibre interconnect. It
can provide 6.55 TFLOPS at peak.

The parallel parametric study routine is tested with the study
in a 50x50x50 variable grid that determines the best
combination of right-ascending node and solar panel
orientation for a Mars orbiter that would maximize the
intensity of sunlight on the panels for a given 3-day period.
Figure 1 shows the performance of the study with respect to
number of processors used. The speed-up is given by the
ratio of the computation time on single processor to the time
on multiple processors. The speed-up is almost linear to the
number of processors up to 32, and the speed-up of 234.3 is
obtained with 256 processors. The robust speed-up is due to
the fact that most of the computation time is spent on the
parallel computation portions of the code as opposed to
those based on sequential execution.

The parallel contour calculation routine is also tested on
JPL’s Dell Cluster Computer. The test example is to
calculate the fraction of time at least one of two satellites in
elliptical orbits is visible from the Earth for 24 hours over a
120x120 planetary surface grid. Figure 2 shows the
performance of the study with respect to the number of
processors used. The improvement in performance is less
ideal than the parametric study example. The weaker
improvement is due to the short computation time in
parallel. In this case, the amount of non-parallel calculations
portions, such as initial setup and final result collection is
approaches that of which can be executed in parallel. We
expect that when the study involves longer periods of
parallel computation, the speed-up will improve. This
would happen if the time domain or sampling rate of the
study was increased

 3

Figure 1. Speed-up of the parallel parametric study
routine on JPL’s Dell Cluster Computer.

Figure 2. Speed-up of the parallel contour calculation
routine on JPL’s Dell Cluster Computer.

3. GRID COMPUTING

The notion of grid computing, in a broad sense, is to use the
resources of many separate computers connected by a
network. In the context of the present work, this involves
the use the remote cluster resource from a user client
machine through a lightweight tool. For the SOAP effort,
the remote job manager had to satisfy the following
requirements: (1) support secure password and data
transport, (2) be compatible with SOAP Windows,
Macintosh OS X, and Linux client platforms.

In compliance with these requirements, we have developed
a remote job manager for the user interface between the
parallel SOAP on a remote cluster computer and the serial
SOAP on a user client machine. The manager handles a job
submission, job query, job killing, job result retrieval, and
job cleaning upon a user’s demand. The manger is written in
Python and uses OpenSSH for the secure connection
between two machines. Both Python and OpenSSH are

available for all four major client platforms and are open-
source products. Furthermore, both programs are well
maintained by a large community, providing a reliable
software platform for future development.

Figure 3. Overall architecture of the remote job
manager for the execution of the parallel SOAP in the

grid computing environment.

In the manager, process execution and error handling is
controlled by Pexpect, which is a Pure Python module for
spawning child applications such as ssh, ftp, passwd, telnet,
controlling them, and responding to their output and errors
[4]. One of the important tasks done via Pexpect is to
securely send the password to ssh and scp for remote login
and remote file transfer, respectively. For security reasons,
OpenSSH’s ssh and scp commands both rely on the POSIX
TTY terminal to accept passwords rather than STDIN.
Pexpect supports this security behavior. Additionally,
because Pexpect is implemented as a Python package, the
functionality of sending passwords is done entirely within
the same process-space as the host process that embeds
and/or imports the Pexect module. OpenSSH’s reliance on
the TTY terminal however becomes a drawback since
Pexpect has to be run from within a POSIX compliant
environment such as Linux and MAC OS X. For Windows,
a Python interpreter alone is insufficient. Python must be
run from within Cygwin which is the POSIX port for
Windows. Cygwin provides a Linux-like environment and
provides many Unix API functionalities [5].

The remote execution of SOAP is initiated by transferring
an input file from the user machine to remote machine using
the scp command and executing a remote shell script on the
cluster computer using the ssh command. The remote shell
script first processes the input argument from the user
machine, edits the user-provided input file to make it
compatible with the parallel (server) version of SOAP, and
then initiates a job submission by invoking the command of
the local scheduler (LSF on JPL’s Dell Cluster computer).
After the job submission, the user can query whether job is

 4

running properly or has been completed. When the job is
completed, the results can be retrieved by using the same
ssh and scp command mechanisms as for the job
submission. All the commands are integrated into Python
module so that the user does not have to directly use the ssh
and scp commands. Figure 3 summarizes the architecture of
the developed remote job manager.

The job manager is tested on Unix, MAC OS X, and
Windows machines. In Unix and MAC OS X machines,
OpenSSH and Python are often already installed. The
installation of the remote job manager is simply to compile
the python scripts we have written. For Windows machine,
Cygwin environment is used to install OpenSSH commands
and Python.

As alternatives, we have also considered other approaches
such as (Simple Object Access Protocol (SOAP)/XML web
services approach [6] and Globus Toolkit [7]. While these
approaches are more versatile than OpenSSH and Python,
the libraries and tools that support these approaches are not
as standardized. They require the development of specific
C/C++ APIs to couple with the web services and Globus
libraries. Especially, the Globus libraries are huge (over 1
GB) even with the minimum set of files, making the porting
of Globus-based applications to a client machine difficult.
Some of Globus libraries such as GRAM are currently
incompatible with Windows platform. The libraries for
SOAP/XML web services and Globus are expected to
mature and become more platform-independent in near
future. Therefore, these alternative approaches provide a
long-term solution for a versatile remote job and resource
allocation manager.

Another reason we decided not to use Globus was a direct
result from policy restrictions of the cluster we were using.
For security reasons, the cluster does not permit daemons to
be installed and run directly from the front-end node of the
cluster. The Globus approach would have required setting
up some http daemon such as Apache Tomcat for Web
Services, GridFTP for file transfer, etc. on the cluster.
Additionally, the client-side file size and dependency
requirements of Globus 4 were not favored by the customer
requirements. The server-side installation requirements with
the Globus approach would have violated policy restrictions
of the cluster deployment.

By developing a remote job management API that leverages
OpenSSH, we were able to satisfy the light-weight
requirements on the client-side, as well as the server-side
restrictions of no additional services or daemons installed.
The functionality of the remote job management API
requires only ssh and scp interaction with the cluster—
which is a status quo standard.

This approach also permits future enabling of Globus or
other simpler Web Services to the restricted cluster by
exposing the remote job management API as a service on
another machine. This allows the cluster to remain secure,

while another machine that uses the remote job management
API can act as a Web Services provider. All requests to this
machine will be delegated to the cluster via the job
management API.

4. CONCLUSIONS

We have adapted the SOAP aerospace engineering
application to the parallel and grid computing environment.
Two computationally intensive capabilities are parallelized
using the MPI library. In the spirit of grid computing, a
lightweight tool for remote job management has been
developed. The parallelized SOAP demonstrates the speed-
up that is almost ideal up to 64 processors. The remote job
manager allows users to execute a job using the parallel
version of SOAP on a remote cluster computer, to monitor
job status and to retrieve job results.

REFERENCES

[1] “Introduction to Parallel Computing,” Blaise Barney,
Online Tutorial,
http://www.linl.gov/computing/tutorials/parallel_comp/

[2] http://en.wikipedia.org/wiki/Grid_computing/

[3] http://www-unix.mcs.anl.gov/mpi/

[4] http://pexpect.sourceforge.net/

[5] http://www.cygwin.com/

[6] http://en.wikipedia.org/wiki/SOAP/

[7] http://www.globus.org/tookkit/

BIOGRAPHY

Seungwon Lee is a senior staff member of the High
Capability Computing and Modeling Group at the Jet
Propulsion Laboratory. Her recent work includes
evolutionary optimization application, high performance
computing, materials modeling, and nonlinear dynamics
system. Her work is documented in numerous journals and
conference proceedings. She has a B.S. and M.S. in Physics
from Seoul National University in Korea, and has a Ph.D in
Physics from Ohio State University.

Hook Hua is a staff member of the High Capability
Computing and Modeling Group at the Jet Propulsion
Laboratory. His recent work includes constrained
optimization and analysis with binary integer programming
and genetic algorithms, knowledge base expert systems with
natural language processing, and image processing models.

 5

He is also experienced with distributed architectures and
middle-ware frameworks. He has a B.S. in Computer
Science and a B.S. in Applied Mathematics both from
University of California, Los Angeles.

John Coggi is a senior engineering specialist in the
Computer Systems Division of The Aerospace Corporation.
He is one of the primary developers of the Satellite Orbit
Analysis Program (SOAP) and uses the tool to perform
advanced orbital analysis for various customers. He is
experienced in Macintosh software development, MPI
programming, and web development. He has a B.S. in
Chemistry from the University of California, Irvine and an
M.S. in Computer Science from California State University,
Long Beach.

David Stodden is a senior project leader in the Computer
and Software Division of The Aerospace Corporation. He is
the project lead for the Satellite Orbit Analysis Program
(SOAP) software and is an AIAA Associate Fellow. He
specializes in orbit analysis, 3D visualization, and MS-
Windows based software development. He holds a M.S. in
Computer Engineering and a B.S. in Computer Science
from California State University, Long Beach.

 6

